最新公告
  • 欢迎您光临起源地模板网,本站秉承服务宗旨 履行“站长”责任,销售只是起点 服务永无止境!立即加入钻石VIP
  • 学习JavaScript数据结构和算法之二叉树详解

    正文概述 掘金(天涯学馆)   2020-12-06   462

    二叉树的概念

    二叉树(Binary Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。

    二叉树的特点

    每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。二叉树中每一个节点都是一个对象,每一个数据节点都有三个指针,分别是指向父母、左孩子和右孩子的指针。每一个节点都是通过指针相互连接的。相连指针的关系都是父子关系。

    二叉树节点的定义

    二叉树节点定义如下:

    struct BinaryTreeNode  
    {  
        int m_nValue;  
        BinaryTreeNode* m_pLeft;  
        BinaryTreeNode* m_pRight;  
    };  
    

    二叉树的五种基本形态

    空二叉树

    只有一个根结点

    根结点只有左子树

    根结点只有右子树

    根结点既有左子树又有右子树

    拥有三个结点的普通树只有两种情况:两层或者三层。但由于二叉树要区分左右,所以就会演变成如下的五种形态:

    特殊二叉树

    斜树

    如上面倒数第一副图的第2、3小图所示。

    满二叉树

    在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。如下图所示:

    完全二叉树

    完全二叉树是指最后一层左边是满的,右边可能满也可能不满,然后其余层都是满的。一个深度为k,节点个数为 2^k - 1 的二叉树为满二叉树(完全二叉树)。就是一棵树,深度为k,并且没有空位。

    完全二叉树的特点有:

    叶子结点只能出现在最下两层。

    最下层的叶子一定集中在左部连续位置。

    倒数第二层,若有叶子结点,一定都在右部连续位置。

    如果结点度为1,则该结点只有左孩子。

    同样结点树的二叉树,完全二叉树的深度最小。

    注意:满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树。

    算法如下:

    bool is_complete(tree *root)    
    {    
        queue q;    
        tree *ptr;    
        // 进行广度优先遍历(层次遍历),并把NULL节点也放入队列    
        q.push(root);    
        while ((ptr = q.pop()) != NULL)    
        {    
            q.push(ptr->left);    
            q.push(ptr->right);    
        }   
        // 判断是否还有未被访问到的节点    
        while (!q.is_empty())    
        {    
            ptr = q.pop();   
            // 有未访问到的的非NULL节点,则树存在空洞,为非完全二叉树    
            if (NULL != ptr)    
            {    
                return false;    
            }    
        }   
        return true;    
    }  
    

    二叉树的性质

    二叉树的性质一:在二叉树的第i层上至多有2^(i-1)个结点(i>=1)

    二叉树的性质二:深度为k的二叉树至多有2^k-1个结点(k>=1)

    二叉树的顺序存储结构

    二叉树的顺序存储结构就是用一维数组存储二叉树中的各个结点,并且结点的存储位置能体现结点之间的逻辑关系。

    二叉链表

    既然顺序存储方式的适用性不强,那么我们就要考虑链式存储结构啦。二叉树的存储按照国际惯例来说一般也是采用链式存储结构的。

    二叉树每个结点最多有两个孩子,所以为它设计一个数据域和两个指针域是比较自然的想法,我们称这样的链表叫做二叉链表。

    二叉树的遍历

    二叉树的遍历(traversing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。

    二叉树的遍历有三种方式,如下:

    (1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树。简记根-左-右。

    (2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树。简记左-根-右。

    (3)后序遍历(LRD),首先遍历左子树,然后遍历右子树,最后访问根结点。简记左-右-根。

    前序遍历:

    若二叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树。

    遍历的顺序为:A B D H I E J C F K G

    //先序遍历

    function preOrder(node){  
        if(!node == null){  
    		putstr(node.show()+ " ");  
            preOrder(node.left);  
            preOrder(node.right);  
        }  
    }  
    

    中序遍历:

    若树为空,则空操作返回,否则从根结点开始(注意并不是先访问根结点),中序遍历根结点的左子树,然后是访问根结点,最后中序遍历右子树。

    遍历的顺序为:H D I B E J A F K C G

    //使用递归方式实现中序遍历  
    function inOrder(node){  
        if(!(node == null)){  
            inOrder(node.left);//先访问左子树  
            putstr(node.show()+ " ");//再访问根节点  
            inOrder(node.right);//最后访问右子树  
        }  
    }  
    

    后序遍历:

    若树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后访问根结点。

    遍历的顺序为:H I D J E B K F G C A

    //后序遍历  
    function postOrder(node){  
        if(!node == null){  
            postOrder(node.left);  
            postOrder(node.right);  
            putStr(node.show()+ " ");  
        }  
    }  
    

    实现二叉查找树 二叉查找树(BST)由节点组成,所以我们定义一个Node节点对象如下:

    function Node(data,left,right){  
        this.data = data;  
        this.left = left;//保存left节点链接  
        this.right = right;  
        this.show = show;  
    }  
    function show(){  
        return this.data;//显示保存在节点中的数据  
    }  
    

    查找最大和最小值

    查找BST上的最小值和最大值非常简单,因为较小的值总是在左子节点上,在BST上查找最小值,只需遍历左子树,直到找到最后一个节点

    查找最小值

    function getMin(){  
        var current = this.root;  
        while(!(current.left == null)){  
            current = current.left;  
        }  
        return current.data;  
    }  
    

    该方法沿着BST的左子树挨个遍历,直到遍历到BST最左的节点,该节点被定义为:

    current.left = null;  
    

    这时,当前节点上保存的值就是最小值

    查找最大值

    在BST上查找最大值只需要遍历右子树,直到找到最后一个节点,该节点上保存的值就是最大值。

    function getMax(){  
        var current = this.root;  
        while(!(current.right == null)){  
            current = current.right;  
        }  
        return current.data;  
    }  
    

    起源地下载网 » 学习JavaScript数据结构和算法之二叉树详解

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
    提示下载完但解压或打开不了?
    最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。若排除这种情况,可在对应资源底部留言,或 联络我们.。
    找不到素材资源介绍文章里的示例图片?
    对于PPT,KEY,Mockups,APP,网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。
    模板不会安装或需要功能定制以及二次开发?
    请QQ联系我们

    发表评论

    还没有评论,快来抢沙发吧!

    如需帝国cms功能定制以及二次开发请联系我们

    联系作者

    请选择支付方式

    ×
    迅虎支付宝
    迅虎微信
    支付宝当面付
    余额支付
    ×
    微信扫码支付 0 元