最新公告
  • 欢迎您光临起源地模板网,本站秉承服务宗旨 履行“站长”责任,销售只是起点 服务永无止境!立即加入钻石VIP
  • 【前端算法系列】堆栈和队列

    正文概述 掘金(linif002)   2021-03-06   699

    堆栈

    堆栈(英文:stack),又称为堆叠。是一种LIFO(LAST IN FIRST OUT 后进先出)的数据结构,对栈数据的操作有push(入栈)和pop(出栈),数据的入栈和出栈都只能在栈顶。

    【前端算法系列】堆栈和队列

    堆栈与DFS

    深度优先搜索(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。该算法与堆栈有着千丝万缕的关系。DFS算法通常需要用到堆栈结构。例如,寻找二叉树中的目标节点。

    如下图所示,红色表示死胡同,绿色G表示目标,我们一起看看DFS是如何寻找目标的:

    1、从入口A出发,首先来到第一个分岔口,有BC两条路,

    2、遍历B,发现是死胡同,回退到最近的分岔口A,尝试往C方向走;

    3、遍历C,发现是一个分岔口,有DEF三条路,

    4、遍历D,发现是死胡同,回退到分岔口C

    6、遍历E,发现有G一条路,

    7、遍历G,找到出口,成功走出“迷宫”!

    【前端算法系列】堆栈和队列

    DFS算法的思路,是试图穷举全部路径。 遍历的目标时,一个劲的往下走,直至无路可走,这大概是深度优先算法中“深”的由来吧!这种思路跟堆栈的数据结构契合。例如上面的例子,用堆栈的方式可以表示如下:

    【前端算法系列】堆栈和队列

    看完上图,相信大家对堆栈和DFS已经有了一定的了解,下面我们来看看与堆栈相关的算法题。

    最小栈问题

    设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。

    • push(x) —— 将元素 x 推入栈中。
    • pop() —— 删除栈顶的元素。
    • top() —— 获取栈顶元素。
    • getMin() —— 检索栈中的最小元素。

    此题的解法如下:

    /**
     * initialize your data structure here.
     */
    var MinStack = function () {
        this.stack = [] // 初始化一个数组
    };
    
    /** 
     * @param {number} x
     * @return {void}
     */
    MinStack.prototype.push = function (x) {
        this.stack.push(x) // 用数组的push方法模拟栈的push方法
    };
    
    /**
     * @return {void}
     */
    MinStack.prototype.pop = function () {
        return this.stack.pop() // 用数组的pop方法,模拟栈的pop方法
    };
    
    /**
     * @return {number}
     */
    MinStack.prototype.top = function () {
        // 做非空判断
        if (!this.stack || !this.stack.length) {
            return
        }
    
        return this.stack[this.stack.length - 1] // 返回数组最后一个元素(即栈顶的元素)
    };
    
    /**
     * @return {number}
     */
    MinStack.prototype.getMin = function () {
        var minVal = Infinity; // 初始化最小值为Infinity
        const { stack } = this
        for (var i = 0; i < stack.length; i++) { // 遍历堆栈,找到比初始值小的值就替换,一轮遍历即可找到最小值。
            if (stack[i] < minVal) {
                minVal = stack[i]
            }
        }
        return minVal
    };
    
    /**
     * Your MinStack object will be instantiated and called as such:
     * var obj = new MinStack()
     * obj.push(x)
     * obj.pop()
     * var param_3 = obj.top()
     * var param_4 = obj.getMin()
     */
    
    有效的括号问题

    给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。

    有效字符串需满足:

    • 左括号必须用相同类型的右括号闭合。
    • 左括号必须以正确的顺序闭合。

    示例 1:

    输入:s = "()"
    输出:true 
    

    示例 2:

    输入:s = "()[]{}"
    输出:true
    

    示例 3:

    输入:s = "(]"
    输出:false
    

    示例 4:

    输入:s = "([)]"
    输出:false
    

    示例 5:

    输入:s = "{[]}"
    输出:true
    

    提示:

    1 <= s.length <= 104

    s 仅由括号 '()[]{}' 组成

    此题的解法如下:

    /**
     * @param {string} s
     * @return {boolean}
     */
    var isValid = function (s) {
        let stack = []
        const leftToRight = {
            '{': '}',
            '[': ']',
            '(': ')',
        }
    
        const len = s.length
    
        for (let i = 0; i < len; i++) {
            const char = s[i]
            if (char === '{' || char == '[' || char === '(') { // 缓存对应的右括号到stack中
                stack.push(leftToRight[char])
            } else {
                // 如果栈为空(空字符串)或栈顶的元素(上一个子符)和当前遍历的字串不一致,说明括号无法闭合,返回false,循环结束。
                if (!stack.length || stack.pop() !== char) {
                    return false
                }
            }
        }
    
        // 如果stack被清空,说明字符串是有效的括号
        return !stack.length
    };
    

    队列

    队列(queue),是一种先进先出(FIFO, First-In-First-Out)的线性表。队列只允许在后端插入(Enqueue)操作,在前端进行删除操作(Dequeue)。

    【前端算法系列】堆栈和队列

    队列与BFS

    BFS算法的实现通常依赖队列这种数据结构,如下图所示,红色表示死胡同,绿色G表示目标,我们一起看看DFS是如何寻找目标的:

    【前端算法系列】堆栈和队列

    1、遍历第2层数据,访问A,有BC两条路,保存为下一层的遍历数据,清空A数据。

    2、遍历第2层数据,访问B,发现是死胡同,清空B数据;遍历C,发现DEF,保存为下一层的遍历数据,清空C数据;

    3、遍历第3层数据,访问D,发现是死胡同,清空D数据;遍历E,发现G,保存为下一层的遍历数据,清空E数据,遍历F数据并清空;

    4、遍历第4层数据,访问G,目标找到。

    BFS算法的思路,是逐层遍历,遍历到哪个层,就把该层的所有数据都遍历完,才考虑下一层。注重的是广度优先,这大概是广度优先算法中“广”的由来吧!这种思路的实现需要用到队列这种数据结构。

    上面的例子,用队列的方式可以表示如下:

    【前端算法系列】堆栈和队列

    队列算法真题

    如何用栈实现一个队列?

    题目描述:使用栈实现队列的下列操作:

    • push(x) -- 将一个元素放入队列的尾部。
    • pop() -- 从队列首部移除元素。
    • peek() -- 返回队列首部的元素。
    • empty() -- 返回队列是否为空。

    示例:

    MyQueue queue = new MyQueue();
    queue.push(1);
    queue.push(2);
    queue.peek(); // 返回 1
    queue.pop(); // 返回 1
    queue.empty(); // 返回 false
    

    说明:

    • 你只能使用标准的栈操作 -- 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
    • 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
    • 假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)。

    解题思路:

    认真看文章的人都知道,堆栈是LIFO(后进先出)的数据结构,而队列是FIFO(先进先出)的数据结构。堆栈只能在栈顶操作元素,而队列可以从尾部插入数据,从头部取出数据。显然,一个堆栈是不可能实现队列的要求的。聪明的小伙伴可能已经想到了,两个堆栈!是的,没有什么是两个堆栈解决不了的,如果有就是三个......回归正题,下面我介绍一下如何用两个堆栈实现一个队列。

    根据题目描述,队列要有push方法,堆栈本身就有push方法,所以可以直接套用,问题不大。而pop方法,堆栈是没有的,要实现pop方法,需要两个堆栈(stack1和stack2)。如下图所示,调用队列的push方法时,始终将元素push到stack1中:

    【前端算法系列】堆栈和队列

    调用pop方法时,始终从stack2取数据。当stack2不为空,直接从stack2中取出数据,当stack2为空时,将stack1中的数据转移到stack2中,再从stack2中取数据。此时,有人可能会问:如果此时还有数据push进来怎么办?没错,先push到stack1中。

    总而言之,就是始终push到stack1中,始终从stack2中pop数据。

    【前端算法系列】堆栈和队列

    该题的参考解法如下:

    /**
     * 初始化构造函数
     */
    const MyQueue = function () {
      // 初始化两个栈
      this.stack1 = [];
      this.stack2 = [];
    };
    
    /**
    * 在MyQueue的原型中添加push方法
    * @param {number} x
    * @return {void}
    */
    MyQueue.prototype.push = function (x) {
      // 直接调度数组的 push 方法
      this.stack1.push(x);
    };
    
    /**
    * 在MyQueue的原型中添加pop方法
    * @return {number}
    */
    MyQueue.prototype.pop = function () {
      // 假如 stack2 为空,需要将 stack1 的元素转移进来
      if (this.stack2.length <= 0) {
        // 当 stack1 不为空时,出栈
        while (this.stack1.length !== 0) {
          // 将 stack1 出栈的元素推入 stack2
          this.stack2.push(this.stack1.pop());
        }
      }
      // 为了达到逆序的目的,我们只从 stack2 里出栈元素
      return this.stack2.pop();
    };
    
    
    /**
    * 在MyQueue的原型中添加peek方法.
    * @return {number}
    * 这个方法和 pop 唯一的区别就是没有将定位到的值出栈
    */
    MyQueue.prototype.peek = function () {
      if (this.stack2.length <= 0) {
        // 当 stack1 不为空时,出栈
        while (this.stack1.length != 0) {
          // 将 stack1 出栈的元素推入 stack2
          this.stack2.push(this.stack1.pop());
        }
      }
      // 缓存 stack2 的长度
      const stack2Len = this.stack2.length;
      return stack2Len && this.stack2[stack2Len - 1];
    };
    
    /**
    * 在MyQueue的原型中添加empty方法.
    * @return {boolean}
    */
    MyQueue.prototype.empty = function () {
      // 若 stack1 和 stack2 均为空,那么队列空
      return !this.stack1.length && !this.stack2.length;
    };
    

    关于堆栈和队列的知识就先介绍到这里了,还有好多经典题目可以搬出来的。同样作为前端的我,也是一边学一边写文章的,希望可以把学到的知识以通俗的方式展现给大家。如有纰漏,欢迎大家在评论区指出。

    码文不易,如果您觉得本文帮助到您,请为我点个赞吧!


    起源地下载网 » 【前端算法系列】堆栈和队列

    常见问题FAQ

    免费下载或者VIP会员专享资源能否直接商用?
    本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
    提示下载完但解压或打开不了?
    最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。若排除这种情况,可在对应资源底部留言,或 联络我们.。
    找不到素材资源介绍文章里的示例图片?
    对于PPT,KEY,Mockups,APP,网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。
    模板不会安装或需要功能定制以及二次开发?
    请QQ联系我们

    发表评论

    还没有评论,快来抢沙发吧!

    如需帝国cms功能定制以及二次开发请联系我们

    联系作者

    请选择支付方式

    ×
    迅虎支付宝
    迅虎微信
    支付宝当面付
    余额支付
    ×
    微信扫码支付 0 元