为了获取一批互不依赖的资源,通常从性能考虑可以用 Promise.all(arrayOfPromises)
来并发执行。比如我们已有 100 个应用的 id,需求是聚合所有应用的 PV,我们通常会这么写:
const ids = [1001, 1002, 1003, 1004, 1005];
const urlPrefix = 'http://opensearch.example.com/api/apps';
// fetch 函数发送 HTTP 请求,返回 Promise
const appPromises = ids.map(id => `${urlPrefix}/${id}`).map(fetch);
Promise.all(appPromises)
// 通过 reduce 做累加
.then(apps => apps.reduce((initial, current) => initial + current.pv, 0))
.catch((error) => console.log(error));
上面的代码在应用个数不多的情况下,可以运行正常。当应用个数达到成千上万时,对支持并发数不是很好的系统,你的「压测」会把第三放服务器搞挂,暂时无法响应请求:
<html>
<head><title>502 Bad Gateway</title></head>
<body bgcolor="white">
<center><h1>502 Bad Gateway</h1></center>
<hr><center>nginx/1.10.1</center>
</body>
</html>
如何解决呢?
一个很自然的想法是,既然不支持这么多的并发请求,那就分割成几大块,每块为一个 chunk
,chunk
内部的请求依然并发,但块的大小(chunkSize
)限制在系统支持的最大并发数以内。前一个 chunk
结束后一个 chunk
才能继续执行,也就是说 chunk
内部的请求是并发的,但 chunk
之间是串行的。思路其实很简单,写起来却有一定难度。总结起来三个操作:分块、串行、聚合
难点在如何串行执行 Promise,Promise 仅提供了并行(Promise.all
)功能,并没有提供串行功能。我们从简单的三个请求开始,看如何实现,启发式解决问题(heuristic)。
// task1, task2, task3 是三个返回 Promise 的工厂函数,模拟我们的异步请求
const task1 = () => new Promise((resolve) => {
setTimeout(() => {
resolve(1);
console.log('task1 executed');
}, 1000);
});
const task2 = () => new Promise((resolve) => {
setTimeout(() => {
resolve(2);
console.log('task2 executed');
}, 1000);
});
const task3 = () => new Promise((resolve) => {
setTimeout(() => {
resolve(3);
console.log('task3 executed');
}, 1000);
});
// 聚合结果
let result = 0;
const resultPromise = [task1, task2, task3].reduce((current, next) =>
current.then((number) => {
console.log('resolved with number', number); // task2, task3 的 Promise 将在这里被 resolve
result += number;
return next();
}),
Promise.resolve(0)) // 聚合初始值
.then(function(last) {
console.log('The last promise resolved with number', last); // task3 的 Promise 在这里被 resolve
result += last;
console.log('all executed with result', result);
return Promise.resolve(result);
});
运行结果如图 1:
代码解析:我们想要的效果,直观展示其实是 fn1().then(() => fn2()).then(() => fn3())
。上面代码能让一组 Promise
按顺序执行的关键之处就在 reduce
这个“引擎”在一步步推动 Promise
工厂函数的执行。
难点解决了,我们看看最终代码:
/**
* 模拟 HTTP 请求
* @param {String} url
* @return {Promise}
*/
function fetch(url) {
console.log(`Fetching ${url}`);
return new Promise((resolve) => {
setTimeout(() => resolve({ pv: Number(url.match(/\d+$/)) }), 2000);
});
}
const urlPrefix = 'http://opensearch.example.com/api/apps';
const aggregator = {
/**
* 入口方法,开启定时任务
*
* @return {Promise}
*/
start() {
return this.fetchAppIds()
.then(ids => this.fetchAppsSerially(ids, 2))
.then(apps => this.sumPv(apps))
.catch(error => console.error(error));
},
/**
* 获取所有应用的 ID
*
* @private
*
* @return {Promise}
*/
fetchAppIds() {
return Promise.resolve([1001, 1002, 1003, 1004, 1005]);
},
promiseFactory(ids) {
return () => Promise.all(ids.map(id => `${urlPrefix}/${id}`).map(fetch));
},
/**
* 获取所有应用的详情
*
* 一次并发请求 `concurrency` 个应用,称为一个 chunk
* 前一个 `chunk` 并发完成后一个才继续,直至所有应用获取完毕
*
* @private
*
* @param {[Number]} ids
* @param {Number} concurrency 一次并发的请求数量
* @return {[Object]} 所有应用的信息
*/
fetchAppsSerially(ids, concurrency = 100) {
// 分块
let chunkOfIds = ids.splice(0, concurrency);
const tasks = [];
while (chunkOfIds.length !== 0) {
tasks.push(this.promiseFactory(chunkOfIds));
chunkOfIds = ids.splice(0, concurrency);
}
// 按块顺序执行
const result = [];
return tasks.reduce((current, next) => current.then((chunkOfApps) => {
console.info('Chunk of', chunkOfApps.length, 'concurrency requests has finished with result:', chunkOfApps, '\n\n');
result.push(...chunkOfApps); // 拍扁数组
return next();
}), Promise.resolve([]))
.then((lastchunkOfApps) => {
console.info('Chunk of', lastchunkOfApps.length, 'concurrency requests has finished with result:', lastchunkOfApps, '\n\n');
result.push(...lastchunkOfApps); // 再次拍扁它
console.info('All chunks has been executed with result', result);
return result;
});
},
/**
* 聚合所有应用的 PV
*
* @private
*
* @param {[]} apps
* @return {[type]} [description]
*/
sumPv(apps) {
const initial = { pv: 0 };
return apps.reduce((accumulator, app) => ({ pv: accumulator.pv + app.pv }), initial);
}
};
// 开始运行
aggregator.start().then(console.log);
运行结果如图 2:
抽象和复用
目的达到了,因具备通用性,下面开始抽象成一个模式以便复用。
串行
先模拟一个 http get 请求。
/**
* mocked http get.
* @param {string} url
* @returns {{ url: string; delay: number; }}
*/
function httpGet(url) {
const delay = Math.random() * 1000;
console.info('GET', url);
return new Promise((resolve) => {
setTimeout(() => {
resolve({
url,
delay,
at: Date.now()
})
}, delay);
})
}
串行执行一批请求。
const ids = [1, 2, 3, 4, 5, 6, 7];
// 批量请求函数,注意是 delay 执行的『函数』对了,否则会立即将请求发送出去,达不到串行的目的
const httpGetters = ids.map(id =>
() => httpGet(`https://jsonplaceholder.typicode.com/posts/${id}`)
);
// 串行执行之
const tasks = await httpGetters.reduce((acc, cur) => {
return acc.then(cur);
// 简写,等价于
// return acc.then(() => cur());
}, Promise.resolve());
tasks.then(() => {
console.log('done');
});
注意观察控制台输出,应该串行输出以下内容:
GET https://jsonplaceholder.typicode.com/posts/1
GET https://jsonplaceholder.typicode.com/posts/2
GET https://jsonplaceholder.typicode.com/posts/3
GET https://jsonplaceholder.typicode.com/posts/4
GET https://jsonplaceholder.typicode.com/posts/5
GET https://jsonplaceholder.typicode.com/posts/6
GET https://jsonplaceholder.typicode.com/posts/7
分段串行,段中并行
重点来了。本文的请求调度器实现:
/**
* Schedule promises.
* @param {Array<(...arg: any[]) => Promise<any>>} factories
* @param {number} concurrency
*/
function schedulePromises(factories, concurrency) {
/**
* chunk
* @param {any[]} arr
* @param {number} size
* @returns {Array<any[]>}
*/
const chunk = (arr, size = 1) => {
return arr.reduce((acc, cur, idx) => {
const modulo = idx % size;
if (modulo === 0) {
acc[acc.length] = [cur];
} else {
acc[acc.length - 1].push(cur);
}
return acc;
}, [])
};
const chunks = chunk(factories, concurrency);
let resps = [];
return chunks.reduce(
(acc, cur) => {
return acc
.then(() => {
console.log('---');
return Promise.all(cur.map(f => f()));
})
.then((intermediateResponses) => {
resps.push(...intermediateResponses);
return resps;
})
},
Promise.resolve()
);
}
测试下,执行调度器:
// 分段串行,段中并行
schedulePromises(httpGetters, 3).then((resps) => {
console.log('resps:', resps);
});
控制台输出:
---
GET https://jsonplaceholder.typicode.com/posts/1
GET https://jsonplaceholder.typicode.com/posts/2
GET https://jsonplaceholder.typicode.com/posts/3
---
GET https://jsonplaceholder.typicode.com/posts/4
GET https://jsonplaceholder.typicode.com/posts/5
GET https://jsonplaceholder.typicode.com/posts/6
---
GET https://jsonplaceholder.typicode.com/posts/7
resps: [
{
"url": "https://jsonplaceholder.typicode.com/posts/1",
"delay": 733.010980640727,
"at": 1615131322163
},
{
"url": "https://jsonplaceholder.typicode.com/posts/2",
"delay": 594.5056229848931,
"at": 1615131322024
},
{
"url": "https://jsonplaceholder.typicode.com/posts/3",
"delay": 738.8230109146299,
"at": 1615131322168
},
{
"url": "https://jsonplaceholder.typicode.com/posts/4",
"delay": 525.4604386109747,
"at": 1615131322698
},
{
"url": "https://jsonplaceholder.typicode.com/posts/5",
"delay": 29.086379722201183,
"at": 1615131322201
},
{
"url": "https://jsonplaceholder.typicode.com/posts/6",
"delay": 592.2345027398272,
"at": 1615131322765
},
{
"url": "https://jsonplaceholder.typicode.com/posts/7",
"delay": 513.0684467560949,
"at": 1615131323284
}
]
验证通过,确实是逐三个请求并发,等待并发请求完毕才继续下三个请求发起,且结果聚合也正确。
总结
- 如果并发请求的数量太大,可以考虑分块串行,块中请求并发。
- 问题看似复杂,不放先简化之,然后一步步推导出关键点,最后抽象,就能找到解决方案。
- 本文的精髓在于使用
reduce
作为串行推动的引擎,故掌握其对我们日常开发遇到的迷局破解可提供新思路,reduce
精通见上篇 你终于用Reduce
了 ?。
常见问题FAQ
- 免费下载或者VIP会员专享资源能否直接商用?
- 本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
- 提示下载完但解压或打开不了?
- 找不到素材资源介绍文章里的示例图片?
- 模板不会安装或需要功能定制以及二次开发?
发表评论
还没有评论,快来抢沙发吧!