继上篇讲过numpy如何构建多维数组之后,今天我们来学习numpy多维数组的用法。
加法和减法操作要求操作双方的维数信息一致,均为M*N为数组方可正确执行操作。
a = np.arange(4) 输出: array([0, 1, 2, 3]) b = a**2 输出: array([0, 1, 4, 9]) c = 10*np.sin(a) 输出: array([ 0. , 8.41470985, 9.09297427, 1.41120008]) n < 35 输出: array([ True, True, True, True], dtype=bool) A = np.array([[1,1],[0,1]]) B = np.array([[2,0],[3,4]]) C = A * B # 元素点乘 输出: array([[2, 0], [0, 4]]) D = A.dot(B) # 矩阵乘法 输出: array([[5, 4], [3, 4]]) E = np.dot(A,B) # 矩阵乘法 输出: array([[5, 4], [3, 4]])
多维数组操作过程中的类型转换
When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise one (a behavior known as upcasting)
即操作不同类型的多维数组时,结果自动转换为精度更高类型的数组,即upcasting
a = np.ones((2,3),dtype=int) # int32 b = np.random.random((2,3)) # float64 b += a # 正确 a += b # 错误
a = np.ones(3,dtype=np.int32) b = np.linspace(0,pi,3) c = a + b d = np.exp(c*1j) 输出: array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j, -0.54030231-0.84147098j]) d.dtype.name 输出: 'complex128'
多维数组的一元操作,如求和、求最小值、最大值等
a = np.random.random((2,3)) a.sum() a.min() a.max() b = np.arange(12).reshape(3,4) 输出: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) b.sum(axis=0) # 按列求和 输出: array([12, 15, 18, 21]) b.sum(axis=1) # 按行求和 输出: array([ 6, 22, 38]) b.cumsum(axis=0) # 按列进行元素累加 输出: array([[ 0, 1, 2, 3], [ 4, 6, 8, 10], [12, 15, 18, 21]]) b.cumsum(axis=1) # 按行进行元素累加 输出: array([[ 0, 1, 3, 6], [ 4, 9, 15, 22], [ 8, 17, 27, 38]]) universal functions B = np.arange(3) np.exp(B) np.sqrt(B) C = np.array([2.,-1.,4.]) np.add(B,C)
其他的ufunc函数包括:
all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor,inner, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var,vdot, vectorize, where
以上就是Python中numpy多维数组的用法。更多Python学习推荐:起源地模板网教学中心。
常见问题FAQ
- 免费下载或者VIP会员专享资源能否直接商用?
- 本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
- 提示下载完但解压或打开不了?
- 找不到素材资源介绍文章里的示例图片?
- 模板不会安装或需要功能定制以及二次开发?
发表评论
还没有评论,快来抢沙发吧!